5.9. 三角比を含む対称式、交代式 No1

\[\sin \theta + \cos \theta = \frac{1}{\sqrt{3}} \] \((0^\circ \leq \theta \leq 180^\circ)\)のとき、次の式の値を求めよ。

(1) \(\sin \theta \cos \theta, \sin^3 \theta + \cos^3 \theta \)

(2) \(\sin \theta - \cos \theta, \tan \theta - \frac{1}{\tan \theta} \)
5.9. 三角比を含む対称式、交代式 No1 解答

(1) \(\sin \theta \cos \theta = -\frac{1}{3}, \sin^3 \theta + \cos^3 \theta = \frac{4\sqrt{3}}{9} \)

(2) \(\sin \theta - \cos \theta = \frac{\sqrt{15}}{3}, \tan \theta - \frac{1}{\tan \theta} = -\sqrt{5} \)
5.9. 三角比を含む対称式、交代式 No2

\[
\sin \theta \cos \theta = \frac{1}{4} \quad (45° \leq \theta \leq 90°)
\]
のとき、次の式の値を求めよ。

(1) \(\sin \theta + \cos \theta, \sin^2 \theta - \cos^2 \theta \)

(2) \(\sin \theta, \cos \theta, \tan^2 \theta - \frac{1}{\tan^2 \theta} \)
5.9. 三角比を含む対称式、交代式 No2 解答

(1) \(\sin \theta + \cos \theta = \frac{\sqrt{6}}{2} \), \(\sin^2 \theta - \cos^2 \theta = \frac{\sqrt{3}}{2} \)

(2) \(\sin \theta = \frac{\sqrt{6} + \sqrt{2}}{4} \), \(\cos \theta = \frac{\sqrt{6} - \sqrt{2}}{4} \), \(\tan^2 \theta - \frac{1}{\tan^2 \theta} = 8\sqrt{3} \)